The Boeing Alertness Model

Technical Fact Sheet.

Scientific Basis

The Boeing Alertness Model is based on research published by Simon Folkard and Torbjörn Åkerstedt on the Three Process Model of Alertness – also known as the Sleep Wake Predictor.

Most relevant references include:

Åkerstedt, T., Axelsson, J. and Kecklund, G. *Individual validation of model predictions of sleepiness and sleep hours.* Somnologie, 2007, 11:169-74.

Åkerstedt, T., Ingre, M., Kecklund, G., Folkard, S. and Axelsson, J. *Accounting for partial sleep deprivation and cumulative sleepiness in the three-process model of alertness regulation*. Chronobiol. Int., 2008b, 25: 309-19

Åkerstedt, T., Connor, J., Gray, A. and Kecklund, G. Predicting road crashes from a mathematical model of alertness regulation – The Sleep/Wake Predictor. Accid. Analys. Prevent., 2008a, 40: 1480-5.

Åkerstedt, T., Folkard, S., & Portin, C. (2004). *Predictions* from the three-process model of alertness. Aviation, Space and Environmental Medicine, 75, A75-A83.

Folkard, S. and Åkerstedt, T. *A three process model of the regulation of alertness and sleepiness.* In: R. Ogilvie and R. Broughton (Eds), Sleep, Arousal and Performance: Problems and Promises. Birkhäuser, Boston, 1991: 11-26.

Axelsson, J., Kecklund, G., Åkerstedt, T., Donofrio, P., Lekander, M., & Ingre, M. (2008). *Sleepiness and performance in response to repeated sleep restriction and subsequent recovery during semi-laboratory conditions*. Chronobiology Int., 25(2), 297-308.

Ingre, M., Van Leeuwen, W., Klemets, T., Ullvetter, C., Hough, S., Kecklund, G., Karlsson, D., & Åkerstedt, T. (2014). *Validating and Extending the Three Process Model of Alertness in Airline Operations*. PLOS, DOI: 10.1371/journal.pone.0108679.

BAM Prediction Capability

Output Sleepiness mapped to the Common

Alertness Scale¹ ranging from 0

to 10,000.

Output Continuous predictions + discrete mode mode per flight for optimization.

Sleep Open – fully visible start/end.

prediction

Individu-
alizationConfigurable diurnal type and
habitual sleep length per chain.

Improvment Closed loop improvement from

method collected data. Self-tuning algorithm.

Applicability

Transfer time BAM respects configurable transfer

times allowing for modeling of commuting and variation in hotel

locations.

Initial state A start-state is customizable pairing² to ensure best rosterability.

Augmentation Up to three in-flight rests.

Acclimatization Time zone driven.

Sleep Configurable to enable airline adjustment specific strategy – both in-flight

and in turn-arounds.

Performance³ >250,000 flight predictions/

second, scaling further via multi-core execution.

multi-core execution

Interface Complies fully with proposed

industry technology standard CAPI 2.0 for performance, connectivity & interchangeability.

Deployment Available stand-alone as well as

through CrewAlert (iOS), Concert (web service), and integrated in the Jeppesen Crew Management solutions.

Support and Training

Support BAM is supported for mission-critical

applications out of Denver, Gothenburg and Singapore. SLA is available on two levels: office hours or 24/7.

Systematic regression testing and service pack process for new releases.

Architectures RHEL4 and above (64bit), Windows,

Solaris, HP-UX, and iOS

Training Training courses are offered in Denver,

Montreal, Gothenburg and Singapore.

Sales/Contact

BAM is sold and supported worldwide by Jeppesen. For more information please visit www.jeppesen.com/frm or contact us through frm@jeppesen.com.

²⁾ Pairing construction requires control over assumptions for the final roster context.

³⁾ Single core performance measured on P9400 2.53GHz with chains averaging 70 legs.

Fatigue Model Comparison Matrix Complements the CASA Guidance Document.

The CASA Biomathematical Fatigue Models Guidance Document

(pdf) is an excellent start when selecting a fatigue model meant to add the predictive/proactive part of a Fatigue Risk Management System, but it leaves out a number of aspects critical for real-world application to crew management processes.

The Fatigue Model Comparison Matrix (pdf) complements the CASA document by addressing a number of additional aspects relevant to take into account.

For more information please contact us through frm@jeppesen.com.

This comparison matrix complements the CASA <u>Biomathematical Fatigue Models Guidance Document</u>, by addressing a number of additional aspects relevant to take into account when selecting a fatigue model meant to add the predictive/proactive part of a Patigue Risk Management System. The CASA document is an excellent start, but leaves out a number of aspects critical for real-world application to crew management processes. For feedback or further questions on this document please contact the authors over email frm@jeppesen.com.

Model Aspect	BAM	Model X
I. Validity / credibility		
Peer-reviewed validation		
fas the validation of the science in the model passed the quality assurance process (called peer-review) with other scientists crutinizing both the method used as well as the results?	Yes	
Publication in well-renowned journal stress the validation published in an international, scientific journal with good reputation (a receipt of peer-review being first class)?	Yes	
Validation on mixed-operation aviation data s the data used for validation specific to just one type of operation or a reasonably big cross section of operational conditions	Yes	
in aviation)? Number of observations in the validation What is the size of the validation data set?	>8,000	
what is the size or the validation data set? Measurement of accuracy s the model accuracy measured to individual observations (or is the model just delivering an average, with unknown precision)?	Yes	
Openly published data set the dataset used for validation openly published (of integrity reasons most certainly in de-identified form)?	Yes	
Openly published model (equations etc.) the model openly published in its entirety with all equations, constants and mechanisms? Meaning; together with openly published	Yes	
lata and validation methodology that anyone, with adequate competency, is able to scrutinize the model validation? Output of operational relevance		
s the model output something that can be directly compared to operational experience (like sleepiness) opposed to a more abstract roperty like "risk index" or "effectiveness" that cannot be observed (at least not easily)?	Yes	
Vendor-offered specific validation s the model vendor offering to measure and compare operational relevance of the model specifically for your operation?	Yes. For free, subject certain conditions.	
2 Applicability		
2.1 Feature set Continuous prediction		
Continuous prediction A prediction of model output at any point in time (also between duties) over a roster or trip. Open prediction of sleep/wake	Yes	
Open prediction of steep wake Clearly stated timings for sleep onset and wake-up (to be compared with operational experience) for check of realism. - Ability to predict also pairings (definable start-state)	Yes	
Customization of the assumption for typical roster context of a pairing, as a function of the pairing itself. (A one-day pairing might typically end up with production prior vs. a long pairing have days off prior.)	Yes	
Per-chain control of habitual sleep length Can habitual sleep length be set differently for each roster if needed?	Yes	
Per chain control of diurnal type Can diurnal type be set differently for each roster if needed?	Yes	
Customizable prediction point When representing holistic risk; can the prediction representing risk for an individual flight be customized to TOD, arrival, owest point etc. to the wish of the airline?	Yes	
- Acclimatization s acclimatization built-in and what is driving the gradual adaptation to local time?	Yes. TZ-driven	
- Customization of tactical sleep patterns Can typical sleep patterns in a certain turn-around be customized to operational experience if there is a disagreement with	Yes	
model prediction of sleep? Detailed control of transfer times	V	
Use actual transport times (if available) to precisely model time between duty and sleep opportunity; for example making difference between airport hotel and downtown hotel. In-flight rest facility classification	Yes EASA, FAA + net	
In Fight Test Tacinity Glassification Modelling of Class I, II, III rest facilities and corresponding recovery proration. Max number of inflight sleep periods	method Yes, up to three per	
- Max number of innight sleep periods Ability to model different in-flight sleep dispositions (once, twice etc. but also placement.) - Mitigation strategies built-in	flight.	
: Mittigation strategies built-in: is the model capable of proposing suitable fatigue mitigation strategies for a certain situation, taking prior sleep/wake, ndividual settings and work history into account?	Yes	
Local light conditions built-in Can the model output also local light conditions for fast investigation of sleep prediction realism?	Yes	
- X-percentile capability. Is the model able of not only answering back with the average prediction, but also for a certain percentile (e.g. "what is the	Yes	
alertness level for the 90-percentile of crew?" 2.2 Connectivity		
- Loose integration over web-service		
It to start of the start of the service start of the service start of the model easily accessible also via a web-service solting on" to an existing solution for crew management requiring only a simple file transfer?	Yes	
Implementation time What is the approximate implementation time needed in an existing solution (for a skilled programmer) to produce the file	2-4 days	

(Extract from the Fatigue Model Comparison Index. Download the pdf document here)

